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1. Introduction 

The aircraft design continues advancing on human-machine interface concepts in order to 

improve safety and facilitate the operation from the flight crew perspective.  These advances 

also provide overall operational performance improvements for airlines. Most of these 

enhancements are obtained by using highly integrated onboard systems with intense usage 

of software which controls the majority functions including those considered as safety-

critical.  

However, improvements for pilots and airlines do not mean an easier life for aeronautical 

investigators when a deep examination of aircraft internal components and its interfaces is 

in order.  Any factual evidences that could lead to scenarios involving possible system’s flaws 

will request a great effort on understanding how the machine internally works. 

At the same time, even for those cases when no clue of aircraft malfunctions are in view, 

with the objective to analyze aspects on human-machine interface, investigators possibly 

will be demanded to verify how information displayed to the pilots are generated and 

processed.  This perspective can be associated also for general and executive aircraft 

designed or modified to receive glass cockpit.  

Likewise, occurrences involving the automation aspect can demand a comparison between 

the pilot’s mental model on how the aircraft functions work and how the machine works 

actually. Again, we have a situation to achieve an adequate level of comprehension 

regarding onboard systems.    

The NASA Study on Flight Software Complexity [11] offers an interesting definition for 

complexity:  “(…) how hard something is to understand or verify. (...)”  
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In this way, as the complexity of onboard systems grows, the challenge of investigators 

grows as well. 

This paper aims to approach three major aspects:  

-  The reality of the growing aircraft systems complexity with intense usage of software. 

- In the light of constant incoming technologies, the importance to revisit some aircraft 

system’s concepts frequently adopted in the investigation process.  

- An invitation for envisioning preparation measures to cope with complexity. In this way, a 

little contribution is offered on the topic “A practical approach for investigation on complex 

aircraft systems”. This topic has the intention to be only an example of initiative in terms of 

guidance material and recommended practices that can be written in order to expand the 

set of references for investigators. 

 

2. Uncovering hidden complexity 

The aviation history has shown an increasing demand for improved onboard functionalities. 

Among the reasons for this demand, it is possible to list safety enhancements, performance 

improvements, and security issues.  The below text is a good expression of this reality: 

“Associated with the enhanced capability afforded by the technology, and as driven by 

the competitive pressures of the civil transport aircraft market, the functionality of 

avionics systems has continued to escalate.” Digital avionics handbook. SPITZER, Cary R (Editor). [8] 

A direct observation of the cockpit panels on different aircraft generations shows 

indubitable growth of onboard resources to the pilots. However this assertion better applies 

to airplanes pre-glass-cockpit.  Since the beginning of the glass cockpit fever, it is not so 

visually evident the amount of complexity behind the systems which is not directly 

associated with the panels. As an example, it is possible to mention the functionality called 

“Autobrake” which frequently corresponds to a single switch in the cockpit panels. Of 

course, the Autobrake switch could never give us an idea of how many lines of software 

code and how many interfaces with other systems were necessary in order to make this 

functionality come true.   

In short, nowadays the real dimension of complexity growth on modern aircraft is quite 

hidden inside the onboard computers but pops out whenever its deep analysis is required.  

Industry discussions about parameters and methods to measure software complexity are in 

place. For the purpose of this paper, the parameter of software size can help us.  

As more onboard system functionalities are progressively being implemented, the size of 

software, measured in terms of source lines of code (SLOC), is believed to double on every 

four years.  That trend has been observed for at least five decades as presented in the Figure 

1.  
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Figure 1: Growing of software complexity in aerospace systems [13] 

 

Leveson [3] bring us a closer view of the different forms of complexity; 

Complexity comes in many forms, most of which are increasing in the systems we are 

building.  Examples include interactive complexity (related to interaction among 

system  components), dynamic complexity (related to changes over time), 

decompositional complexity (where  the  structural decomposition  is  not  consistent  

with the functional decomposition), and nonlinear complexity (where  cause  and  

effect are not related in a direct obvious  way).   Engineering a safer world. Leveson, Nancy G.  

 

3. Revisiting (or updating) some relevant concepts 

The above mentioned “interactive complexity” can be understood as more intense 

interlacement among systems. In order to safely integrate such systems containing new 

technologies, the industry and authorities have developed new concepts and occasionally 

have revised some legacy ones.   

As a consequence, investigators need to revisit some definitions with objective to establish a 

firm foundation to build analysis, conclusions and effective recommendations.  

Updating, or even only revisiting, some legacy concepts and terminologies regarding aircraft 

systems will allow being better prepared for present and future complex investigations. 

Certainly, it is not the intention of this topic to try to identify all of these concepts. Instead, 

some examples have been selected to be explored here only for illustrative purposes. 
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3.1 Reviewing failure, fault and error concepts 

The classic investigator’s initial approach with respect to aircraft systems is to identify the 

existence of any failure which could be associated with the sequence of events that resulted 

in the mishap. There is nothing wrong with this mindset; however, a full understanding of 

the term “failure” (as used by the engineers that designed the aircraft) is in order. 

Additionally, the term “fault” can be possibly perceived as equivalent to “failure” by those 

people not long-term involved in aircraft design and maintenance. The term “failure” comes 

from pure mechanical systems era, when a function became inoperative or degraded 

frequently due to some jammed or broken part. While in software era, this term needs to be 

revisited.  

It is worth mentioning that the classic “failure” concept is not applicable to software as it has 

no physical properties. Instead, certain software can be found in an undesired condition 

which occurs when the specific logic path that contains an error is executed. It means that 

an error may exist inside software but will never cause any consequence as long as it not 

executed by the processor.  In this way, the error itself is not an event, but a state. However, 

it has a potential to ultimately cause the associated system to be inoperative, or no longer 

function as intended (according to the specifications).  

Appendix 1 offers a compilation of failure, fault and error definitions. An attempt to organize 

it in a simple way can be found in Figure 2.  

 

 

 

 

 

 

 

 

 

Figure 2 – Representation of error, fault and failure. 

 

From the definitions, the term “fault” can be applied both to software and hardware. 

Aircraft systems design techniques can be used in order to detect faults and manage them in 

order to maintain the system fully functional or partially functional.  
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3.2 The role and challenge of integration 

Investigations of highly-integrated systems require adequate tools, methods and the 

availability of a representative integration laboratory. Most of the times, it is not enough to 

perform tests/analysis of components separately. Figure 3 illustrates the evolution of 

avionics architectures and the increase of integration. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Growing level of integration in avionics architectures [8]. 

 

High integration means a greater number of interactions between parts, components and 

functionalities.  During investigations, it is essential to distinguish system’s misbehavior 

caused by single component anomaly and those that have root cause on the interactions 

between components tightly coupled.  

Further reflection on these aspects leads us to consider that the investigation effort applied 

to understand and test the parts separately is required to be equivalent to the effort to 

understand, analyze and test the onboard systems as a whole, whenever possible. A further 

reflection could be to ask ourselves how to investigate interactions inside a software. Or 

even, how to investigate software at all. 

 

3.3 Before jumping into the swamp of failures and faults 

The strategy proposed is: first apply full effort to understand aircraft systems in normal 

conditions and, after that, start to approach occasional faults or failures. 

The question here could be: what is the normal way to operate the system and what is the 

expected outcome. Normal way refers to the operation of the aircraft in accordance with the 
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approved procedures specified in the manuals. It includes respecting the approved 

operational aircraft limits/envelope. In this way, the aircraft manuals can be considered as 

an extension of the aircraft. 

After all factual information has been collected from the accident site; it can be a big and 

natural temptation for the investigators to focus first on the eventual evidences of failures. 

However, understanding the system’s normal operation first will avoid difficulties, and 

possible delays, on the effort to discover the failure mechanism. 

You can invest some days to understand the normal operation and then some days on the 

failure, or, jump directly to the failure and eventually spend a month to fully understand 

how and why the failure occurred including its surrounding aspects. This is because complex 

systems include different modes of operations, protections, alerts, fault management 

strategies and application of fail-operational/fail-safe concept that only make sense if seen 

from the perspective of normal operation and human-machine-interface philosophy. 

Fail-Operational: A characteristic design which permits continued operation in spite of 

the occurrence of a discrete malfunction. FAA System Safety Handbook, Appendix A: Glossary 

Fail-safe: A characteristic of a system whereby any malfunction affecting the system 

safety will cause the system to revert to a state that is known to be within acceptable 

risk parameters.  FAA System Safety Handbook, Appendix A: Glossary 

 

 

3.4 Software versus Hardware 

Software: Computer programs, procedures, rules, and associated documentation and 

data pertaining to the operation of a computer system.   FAA System Safety Handbook 

Essentially software is an organized sequence of instructions to be executed by a processor. 

Instructions could be defined as ideas on “how to do”. Therefore software is invisible, 

intangible and abstract.  

As mentioned before, software has no physical properties and there are no physical laws 

underlying software behavior. Therefore there are no physical constraints on software 

complexity. You can write a software code as so complex as you wish.  

The above aspects make evident that the differences between hardware/mechanical and 

software cannot be disregarded. The Table 1 is a proposal for mapping these main 

differences based on two books: Safeware – System Safety and Computers [2], and Software 

Safety and Reliability [4]. 
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Table 1: Differences between Hardware/Mechanical and Software. 

Hardware / Mechanical Software 

Subjected to wear-out. There is no wear-out. 

Some failures are due to wear, fatigue, 
overload or manufacturing issues. 

The classic concept of failure is not 
applicable. A “fault” occurs when the logic 

path that contains an error is executed. 

Reliability is time related and can be 
quantified. 

Reliability is not time dependent and it is 
difficult to be quantified. Traditional 

reliability measures don’t apply. 

Failure rates are somewhat predictable 
according to known patterns. 

It is not consensus that failure rates can be 
directly associated to software.  

Possible inspection or measurement. 
It is not possible to perform direct visual 

inspection. 

Preventive maintenance can be applied. 
There is no equivalent to preventive 

maintenance for software. 

Subjected to manufacturing variability. Software can be replicated perfectly. 

Hardware interfaces are tangible. Software interfaces are conceptual. 

A hardware or a mechanical device can 
exist without software. 

There is no software without hardware. 
Pure software is useless; software exists 
only as part of a system. The software 

interface with aircraft happens only through 
the system’s hardware. 

 

 

Hardware/mechanical parts may exhibit progressive malfunctions due to wear but without 

full interruption of operation. However, since there are no wear-out phenomena, software 

errors have a pattern to occur suddenly without previous clues or warnings. 

According to Herrmann [4], unlike hardware, the cause of failures in firmware using 

embedded software is always systematic, not random. 

 

3.5 The systems interaction with the environment 

The last line of the Table 1 brings us an important aspect that needs to be explored. The 

hardware of an onboard computer is subjected to different external foreseen threats, as 

illustrated in Figure 4.  
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Any engineering measure to protect equipment against adverse external factors will always 

assume an envelope in terms of maximum and minimum values. Of course, it is impossible 

to design a component which resists, for example, an infinite high temperature. A certain 

value certainly needs to be defined by industry and authorities as adequate in terms of 

acceptable level of safety.   

 

 

 

 

 

 

 

 

 

 

Figure 4 – Simplified schematics for hardware and software interface. 

 

As the realities of equipment operation under actual environmental conditions are better 

understood, the engineering mitigation measures for these stresses are constantly being 

improved. A challenge for the investigator is that some of these threats are not measured, or 

even if it is measured, sometimes it is assumed that the value is not recorded.  A good 

example is Electromagnetic Interference which can be produced by diverse sources, 

including lightning strikes.  

However, as we live in the information society, every day, new sources of data become 

available to the public. In the recent years, meteorological science evolved in such a way 

that it is possible to obtain real-time lightning maps on Web (i.e. 

https://www.lightningmaps.org).  

New reliable data sources are becoming available faster than a certain investigator can be 

aware. This aspect reinforces the value of sharing information, techniques, tips and tricks 

throughout the investigators’ community. Additionally, it is essential to share also the 

assessment on how trusty a certain Web source is. 
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4. A practical approach for investigation of complex aircraft 

systems 

This step-by-step must not be considered as definitive or seen as a formal manufacturer 

procedure, far from it. As mentioned before, it is only a little contribution to illustrate the 

embryo idea that some additional guidance material and recommended practices can be 

developed to be included on future investigator’s toolbox.  

The survival on a complex environment requires well established references and guidance, 

otherwise the investigator may find him or herself lost in a sea of information.  The practices 

below can be useful for the investigators in the path to determinate failure mechanisms.  

 

4.1 (Step #1) Obtaining all information regarding the aircraft configuration 

Since the majority of system’s behavior is determined by software it is essential to obtain 

the information about the software version of all involved components. For highly-

integrated airborne systems, usually there is a so called “top level system part number”, or 

software version (load) of the entire avionics suite which most of the times can be retrieved 

by accessing the central maintenance computers, or maintenance logs.  

For distributed federated or avionics architectures, the only way is to verify the version of 

each component on ID plates. If the aircraft was totally destroyed, the maintenance records 

are the source to get this information. 

Units that compose a distributed/federated avionics suite can be upgraded individually. 

However, there are not rare situations when the airframe manufacturer developed and 

certified a software upgrade of a certain component together with the upgrade of other 

unit(s). This can happen also for hardware upgrades. In this case, the upgrade is made 

involving a group of components, in accordance with the service bulletin issued by the 

manufacturer.  

The operators need to pay special attention to what are the approved configurations in 

terms of component software/hardware versions.  In other words, components that are 

individually airworthy (i.e. FAA form 8130), not necessarily will compose an airworthy 

configuration in the aircraft. 

Intermixing components in a non-approved configuration may cause unpredicted 

consequences in terms of misbehavior, malfunctions and failures. The adverse effects can 

appear not necessarily during startup but maybe only during flight. If no proper 

hardware/software configuration analysis is performed, the investigation will probably 

become jammed or entangled in the net of conflicting information. 
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4.2 (Step #2) Collecting and analyzing onboard recorded data  

It is well known that crash recorders are not the only possible source of onboard recorded 

data. From late 80’s, the majority of onboard electronic units and modules have internal 

Non-Volatile Memories (NVMs) which may record fault/failure codes for maintenance 

purposes. The data retrieved from Central Maintenance Computer (CMC) is a top priority 

NVM as it usually concentrates status information from a set of components. In highly-

integrated systems, the interpretation of the presence/absence of fault/failure codes in the 

NVMs is very dependent on the hardware/software versions. It is recommended that the 

interpretation of the logs of fault/failure codes is made meticulously, in teamwork, involving 

investigation authorities, component manufacturer, airframe manufacturer and the 

operator’s representative.  

Regarding the crash recorders, it is recommended that the analysis of the flight data 

recorder (FDR) has the involvement of the same team that worked on NVMs, in order to 

ensure the right correlation between the FDR data and NVM data.  

 

4.3 (Step #3) Reproducing scenarios in a controlled environment 

The third important step is to try to reproduce the aircraft fault/failure condition in a 
controlled environment. The concept of a controlled environment can be understood as an 
aircraft integration laboratory, “iron bird”, or, even the aircraft under investigation 
eventually if it has not been significantly damaged in such way that the repair will not affect 
the representativeness of the sub-system(s) under investigation. Another aircraft tail 
number of the same model can be used as a controlled environment as long as it is free of 
malfunctions and using the same configurations of software/hardware. Variations can be 
accepted if an engineering analysis demonstrates that the differences will not affect its 
representativeness. 
 
Before running any test or analysis, the setup of the controlled environment needs to 
represent, as close as possible, the systems conditions present at the moment of the 
occurrence.    
 
The majority of in-flight conditions are very difficult to be reproduced on actual highly-
integrated aircraft on the ground. Even an aircraft integration laboratory requires a good 
pre-test planning and hours of setup depending on the specific desired in-flight conditions 
 
In terms of engineering, it is almost impossible to fully understand the failure mechanism 
without reproducing it in a controlled environment. No effective engineering effort to design 
a technical solution or correction is possible to be made without a full comprehension of the 
failure mechanism.  
 
Note that Full Flight Simulators (FFS) used for pilot’s training may not be adequate CEs for 
going deep into aircraft systems for failure investigation.  A FFS aims to reproduce the 
predicted behavior of the onboard systems with the focus on cockpit effects and does not 
necessarily use the same hardware/software of an actual aircraft. 
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4.4 (Step #4) Software Investigations 

For the purposes of this paper, “software investigation” refers to the activities performed on 

aircraft systems with the objective to understand their behavior as a result of software 

design and investigate possible flaws. 

It is important to note that in a modern avionics suite, most interactions between parts, 

components and functionalities are virtually established at software level.  

The identification of a flaw in the software can be achieved only if the 

error/malfunction/fault/failure is found or reproduced during the activities performed on 

the CE.  Investigators need to be aware that, even applying the best effort on the CE, 

unfortunately the situation experienced on the occurrence under investigation may never be 

reproduced. This is because the software of a highly-integrated aircraft uses a lot of input 

variables and eventually an error became evident only in a very specific combination of input 

values and processing status.  About this subject, Leveson [2] states that: 

“Even if the possibility of software error is investigated, subtle errors that cause 

accidents in well-tested and sometimes long-used systems are not easy to find (or to 

prove that they may or not exist)”.   

Note: In the above excerpt, the author uses “accident” as a general term, not specifically in 

the context of aeronautical mishap investigation (ICAO Annex 13).  

 

5. Conclusions 

• The real dimension of complexity growth on modern aircraft is hidden inside the 

onboard computers. 

• Software is invisible, intangible and there are no physical laws underlying software 

behavior. Traditional investigation concepts and techniques not necessarily apply.  

• It is essential to retrieve any information regarding the aircraft configuration in terms 

of hardware/software versions.  

• Components that are individually airworthy (FAA form 8130), not necessarily will 

compose an airworthy configuration in the aircraft. Non-approved configurations 

may cause unpredicted consequences in terms of misbehavior, malfunctions and 

failures which can be virtually impossible to be investigated in case of total loss. 

• A planned usage of an adequate controlled Eevironment is a key factor for the 

success of the investigations involving highly-integrated onboard systems.  

• Aircraft complexity and the unfolding challenges cannot be eliminated but can be 

managed through adequate training, specific guidance, clarification and 

harmonization of relevant concepts/terminology. 

• It is worth to timely share indications about new trusty data sources (especially those 

Web on-line) which can be strategic for the investigators’ community. 
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7. Appendix 1 

Failure (Cambridge Aerospace Dictionary): Separation of a part into two or more pieces 

that the part is no longer complete (FAA). 

Failure (AC 25.1309–1B Arsenal Draft): An occurrence that affects the operation of a 

component, part, or element such that it can no longer function as intended.  

Failure (SAE ARP 4754): The inability of an item to perform its intended functions.  
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Failure (IEEE Standard 610.12-1990) [ DO178B ]: The inability of a system or 

component to perform its required functions within specified performance 

requirements [ limits ].   

Fault (NASA-STD-8719.13A): Any change in state of an item that is considered to be 

anomalous and may warrant some type of corrective action.  

Fault (DO-254) - (1): A manifestation of a flaw in hardware due to an error or random 

event. A fault, if it occurs, may cause a failure. (2) An undesired anomaly in an item.  

Fault (DO-178C): A manifestation of an error in software. A fault, if it occurs, may cause 

a failure.  

Error (Cambridge Aerospace Dictionary): In electronic data-processor, or processing, 

incorrect step, process or result , whether due to machine malfunction or human 

intervention. 

Error (DO-178C): Error – With respect to software, a mistake in requirements, design, 

or code. 

Error: (N.G.Leveson): An error is a design flaw or deviation from a desired or intended 

state. 

Error (FAA System Safety Handbook, Appendix A: Glossary): A mistake in engineering, 

requirement specification, or design, implementation, or operation which could result 

in a failure, and /or contributory hazard. 

Error (FAA AC 25.1309–1B Arsenal Draft): An omission or incorrect action by a 

crewmember or maintenance personnel, or a mistake in requirements, design, or 

implementation. Note: Errors and events may cause failures or influence their effects, 

but are not considered to be failures. 

 


